Geostatistical Modeling of Wildfire Occurrence Probability: The Case Study of Monte Catillo Natural Reserve in Italy

Author:

Berardi Davide1ORCID,Galuppi Marta1ORCID,Libertà Angelo1,Lombardi Mara1ORCID

Affiliation:

1. Department of Chemical Engineering Materials Environment (DICMA), Sapienza-University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

The increasing incidence of wildfires in the Mediterranean region has raised significant scientific and environmental concerns. This study focuses on a retrospective analysis of wildfire ignition and propagation within the context of the Monte Catillo Natural Reserve in Italy. After conducting a comprehensive review of the current state-of-the-art wildfire susceptibility mapping, propagation modeling, probability assessment, forest vulnerability models, and preventive silvicultural measures, we examine the regulatory framework surrounding wildfires in the national context, with a specific focus on prevention, prediction, and active firefighting measures. A geostatistical model of wildfire occurrence was developed, starting with the characterization of the area vegetation and anthropogenic factors influencing wildfire ignition. After that, wildfire observations from the period between 2010 and 2021 were included. The objective is to generate a wildfire hazard map for two distinct vegetation communities. To accomplish this, a statistical analysis was applied using the Poisson Model, assessing its goodness-of-fit by comparing observed frequencies with experimental data through the chi-square test. In conclusion, this model serves as a valuable tool for characterizing wildfire hazards, including ignition probabilities and propagation scenarios, within the Monte Catillo Natural Reserve. The research significantly contributes to enhancing our understanding of wildfire dynamics and plays a crucial role in the development of effective strategies for wildfire risk management.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3