External Surface Quality of the Graphite Crystallizer as a Factor Influencing the Temperature of the Continuous Casting Process of ETP Grade Copper

Author:

Kwaśniewski Paweł,Strzępek PawełORCID,Kiesiewicz Grzegorz,Kordaszewski Szymon,Franczak KrystianORCID,Sadzikowski MichałORCID,Ściężor Wojciech,Brudny Anna,Kulasa Joanna,Juszczyk Barbara,Wycisk Romuald,Śliwka Michał

Abstract

Today’s world is a place where lack of electrical energy would be unimaginable for most of society. All the conductors in the world, both aluminum and copper, have their origin in various types of casting lines where the liquid metal after crystallization is being processed into the form of wires and microwires. However, the efficiency of the continuous casting processes of metals and the final quality of the manufactured product strictly depend on the design of the used crystallizers, the materials used during its production and its quality. Research conducted in this paper focuses on the latter, i.e., external surface quality of the graphite crystallizer at the place of contact with the primary cooling system. In order to quantify its influence on the continuous casting process numerical analyses using the finite element method has been conducted, which results have been further confirmed during empirical tests in laboratory conditions. It has been proven with all of the proposed methods that the temperature of the obtained cast rod is closely linked to the aforementioned surface quality, as when its roughness coefficient surpasses a certain value the temperature of the obtained product increases almost twofold from approx. 150–170 °C to 300–320 °C. These values might influence the quality and final properties of the cast rod, the susceptibility to wire drawing process and possible formation of wire drawing defects and therefore be of much importance to the casting and processing industry.

Funder

The National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3