Creation of Polymer Hydrogelator/Poly(Vinyl Alcohol) Composite Molecular Hydrogel Materials

Author:

Ohsedo Yutaka1ORCID,Ueno Wakana2

Affiliation:

1. Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-Machi, Nara 630-8506, Japan

2. Faculty of Human Life and Environment, Nara Women’s University, Kitauoyahigashi-Machi, Nara 630-8506, Japan

Abstract

Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo-p-phenylene-terephthalamide) polymer (NaPPDT), and water-soluble polymer with the polar group, poly(vinyl alcohol) (PVA) in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of NaPPDT aqueous solutions (0.1 wt.%~1.0 wt.%) and PVA aqueous solutions exhibited thixotropic behavior in the relatively low concentration region (0.1 wt.%~1.0 wt.%) and spinnable gel formation in the dense concentration region (4.0 wt.%~8.0 wt.%) with 1.0 wt.% NaPPDT aq., showing a characteristic concentration dependence of mechanical behavior. In contrast, each single-component aqueous solution showed no such gel formation in the concentration range in the present experiments. No gel formation behavior was also observed when mixed with common anionic polymers other than NaPPDT. This improvement in gel-forming ability due to mixing may be due to the increased density of the gel’s network structure composed of hydrogelator and PVA and rigidity owing to NaPPDT.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3