Affiliation:
1. Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA
2. Department of Physiology and Pharmacology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
Abstract
Connective tissue models grown from cell monolayers can be instrumental in a variety of biomedical fields such as drug screening, wound healing, and regenerative engineering. However, while connective tissues contain abundant fibrillar collagen, achieving a sufficient assembly and retention of fibrillar collagen in vitro is challenging. Unlike the dilute cell culture environment, the body’s environment is characterized by a high density of soluble macromolecules (crowding) and macromolecular networks (confinement), which contribute to extracellular matrix (ECM) assembly in vivo. Consequently, macromolecular crowding (MMC) has been successfully used to enhance the processing of type I procollagen, leading to significant increases in fibrillar collagen assembly and accumulation during in vitro culture of a variety of cell types. In this study, we developed a combination approach using a carrageenan hydrogel, which released soluble macromolecules and served as a confinement barrier. We first evaluated the local carrageenan release and then confirmed the effectiveness of this combination approach on collagen accumulation by the human MG-63 bone cell line. Additionally, computational modeling of oxygen and glucose transport within the culture system showed no negative effects of the hydrogel and its releasates on cell viability.
Funder
Parks College of Engineering, Aviation, and Technology at Saint Louis University
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献