Carrageenan-Based Crowding and Confinement Combination Approach to Increase Collagen Deposition for In Vitro Tissue Development

Author:

Krebs Joseph1ORCID,Stealey Samuel1ORCID,Brown Alyssa1,Krohn Austin1,Zustiak Silviya Petrova12ORCID,Case Natasha1

Affiliation:

1. Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA

2. Department of Physiology and Pharmacology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA

Abstract

Connective tissue models grown from cell monolayers can be instrumental in a variety of biomedical fields such as drug screening, wound healing, and regenerative engineering. However, while connective tissues contain abundant fibrillar collagen, achieving a sufficient assembly and retention of fibrillar collagen in vitro is challenging. Unlike the dilute cell culture environment, the body’s environment is characterized by a high density of soluble macromolecules (crowding) and macromolecular networks (confinement), which contribute to extracellular matrix (ECM) assembly in vivo. Consequently, macromolecular crowding (MMC) has been successfully used to enhance the processing of type I procollagen, leading to significant increases in fibrillar collagen assembly and accumulation during in vitro culture of a variety of cell types. In this study, we developed a combination approach using a carrageenan hydrogel, which released soluble macromolecules and served as a confinement barrier. We first evaluated the local carrageenan release and then confirmed the effectiveness of this combination approach on collagen accumulation by the human MG-63 bone cell line. Additionally, computational modeling of oxygen and glucose transport within the culture system showed no negative effects of the hydrogel and its releasates on cell viability.

Funder

Parks College of Engineering, Aviation, and Technology at Saint Louis University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3