Self-Healing Oxalamide Organogelators of Vegetable Oil

Author:

Vujičić Nataša Šijaković1ORCID,Sajko Josipa Suć2,Brkljačić Lidija2,Radošević Petra1,Jerić Ivanka2ORCID,Kurečić Ivona2

Affiliation:

1. Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

2. Laboratory for Biomimetic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

Abstract

The aim of this study was to assess the gelling potential of chiral oxalamide derivatives in vegetable oils. Special emphasis was given to the potential applications of the examined oil gels as sustained delivery systems and as fat substitutes in food products. The applicability of oil gelators is envisaged in food, cosmetics, and the pharmaceutical industry. The regulations requiring the elimination of saturated fats and rising concerns among consumers health motivated us to investigate small organic molecules capable of efficiently transforming from liquid oil to a gel state. The oxalamide organogelators showed remarkable gelation efficiency in vegetable oils, thermal and mechanical stability, self-healing properties, and a long period of stability. The physical properties of the gels were analysed by TEM microscopy, DSC calorimetry, and oscillatory rheology. The controlled release properties of acetylsalicylic acid, ibuprofen, and hydrocortisone were analysed by the LC–MS method. The influence of the oil type (sunflower, soybean, and olive oil) on gelation efficiency of diverse oxalamide derivatives was examined by oscillatory rheology. The oxalamide gelators showed thermoreversible and thixotropic properties in vegetable oils with a minimum gelation concentration of just 0.025 wt%. The substitution of palm fats with gelled sunflower oil applied in cocoa and milk spreads at gelator concentrations lower than 0.2 wt% have shown promising viscoelastic properties compared to that of the original food products.

Funder

RBI

Croatian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3