Influence of Impurity Dissolution on Surface Properties and NH3-SCR Catalytic Activity of Rare Earth Concentrate

Author:

Zhang ,Zhu ,Zhang ,Li ,Luo ,Li ,Zhao ,Jin ,Wu ORCID

Abstract

Impurity removal and modification of rare earth concentrate powder were conducted by roasting weak acid-weak alkali leaching to obtain the active components of denitrification catalysts. NH3 selective catalytic reduction catalyst samples were prepared by mixing and kneading with pseudo-γ-Al2O3 boehmite as carrier. The results showed that the Ce7O12 content in the active component samples increased and dispersed more evenly. The grain size of the samples was refined, the specific surface area increased, and the active sites exposed more. Ce coexists in the form of Ce3+ and Ce4+. Fe coexists in the form of Fe3+ and Fe2+, but Fe3+ is abundant. Some Ce, La, Nd, Pr, Fe, Mn, and other components formed solid melts during preparation, which increased the synergistic catalytic effect. The denitrification efficiency of the catalyst sample was 92.8% under the conditions of reaction temperature 400 °C, NO content was 600 ppm, NH3/NO ratio was 1.5, and O2 concentration was 4%.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3