A Thermodynamic Analysis on the Roasting of Pyrite

Author:

Zhang Yan,Li Qian,Liu XiaoliangORCID,Xu Bin,Yang Yongbin,Jiang Tao

Abstract

A series of thermodynamic calculations are performed for the roasting of pyrite in changing temperatures and atmospheres. The relationship between ΔrGθ and temperature in the range of T = 300–1200 K shows that, depending on the atmosphere it is in, reactions of pyrolysis, oxidation or reduction can occur. Both the pyrolysis of pyrite in an inert atmosphere and its oxidation by oxygen can form pyrrhotite (mainly Fe0.875S and FeS), but the temperature required for oxidation is much lower than that for pyrolysis. In an oxygen-containing atmosphere, the isothermal predominance areas for the Fe–S–O system indicate that a change in temperature and oxygen partial pressure can lead the pyrite to undergo desulphurization to pyrrhotite (FeS2 → Fe0.875S/FeS) or iron oxides (FeS2 → Fe3O4/Fe2O3), or sulphation to iron sulphates (FeS2 → FeSO4/Fe2(SO4)3). The presence of carbon is beneficial to the desulphurization of pyrite under an oxidizing atmosphere since iron sulphates can be converted to iron oxides at very low levels of PCO/PCO2. Results presented in this paper offer theoretical guidance for the optimization of roasting of pyrite for different purposes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Central South University

China Scholarship Council

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3