Optimization of Nanowell-Based Label-Free Impedance Biosensor Based on Different Nanowell Structures

Author:

Fardoost Ali1ORCID,Raji Hassan1,Javanmard Mehdi1

Affiliation:

1. Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA

Abstract

Nanowell-based impedance-based label-free biosensors have demonstrated significant advantages in sensitivity, simplicity, and accuracy for detecting cancer biomarkers and macromolecules compared to conventional impedance-based biosensors. Although nanowell arrays have previously been employed for biomarker detection, a notable limitation exists in the photolithography step of their fabrication process, leading to a reduced efficiency rate. Historically, the diameter of these nanowells has been 2 μm. To address this issue, we propose alternative geometries for nanowells that feature larger surface areas while maintaining a similar circumference, thereby enhancing the fabrication efficiency of the biosensors. We investigated three geometries: tube, spiral, and quatrefoil. Impedance measurements of the samples were conducted at 10 min intervals using a lock-in amplifier. The study utilized interleukin-6 (IL-6) antibodies and antigens/proteins at a concentration of 100 nM as the target macromolecules. The results indicated that tube-shaped nanowells exhibited the highest sensitivity for detecting IL-6 protein, with an impedance change of 9.55%. In contrast, the spiral, quatrefoil, and circle geometries showed impedance changes of 0.91%, 0.95%, and 1.62%, respectively. Therefore, the tube-shaped nanowell structure presents a promising alternative to conventional nanowell arrays for future studies, potentially enhancing the efficiency and sensitivity of biosensor fabrication.

Funder

Young Faculty Award program of the Defense Advanced Research Projects Agency

Publisher

MDPI AG

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3