Abstract
Industrial minerals are at the forefront of innovation and play an essential role in many innovative applications. Their functionalities and properties make them very versatile materials which are essential to many industries. A combination of properties such as heat capacity, density, price, availability, and eco-friendliness are exceptional and crucially advantageous of industrial minerals utilisation as thermal energy storage (TES) systems. This technology stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. In this context, the utilisation of industrial minerals as carriers for impregnating phase change materials (PCM) can deliver new innovative products acting as short-term energy storage systems for construction applications to the market. TES is a technology that can solve the existing mismatch of energy supply and demand and improve buildings’ system performance by smoothing temperature fluctuations, as well as improving the reliability of the heating and/or cooling source. However, the most recent publications in this area are focused on PCM-enhanced building components thermal and kinetics analysis rather than focusing on the building component scale. This study is focused on the industrial minerals-PCM application as part of the building’s envelope, aiming to determine the benefits for buildings in terms of thermal energy performance and renewable energy penetration based on real data, harvested by an intelligent monitored building in Lavrion Technological and Cultural Park operated solely for research activities.
Reference22 articles.
1. Sustainable Developmenthttps://www.ima-europe.eu/commitments/sustainable-development
2. Enhancement of Thermal Performance of Buildings Using Cementitious Composites Containing Phase Change Material;Ramakrishnan,2017
3. Mikroverkapselte Phasenwechselmaterialien in Wandverbundsystemen;Schossig,2007
4. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars
5. https://digitalworks.union.edu/theses/1647
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献