Mechanisms of Seed-To-Seed Interactions between Dominant Species in the Yangtze River Estuary under Saline Condition

Author:

Wang Cheng-HuanORCID,Yu Zhen-Lin,Yasenjiang Yuerenisha,Tang Long,Gao Yang,Zou Chun-Jing

Abstract

Plant community assembly is the central issue in community ecology. As plant traits differ in different life history stages, the form, intensity and mechanism of interspecific interactions may change with the ontogenetic process of plants. However, our understanding of interspecific interaction mechanisms during germination is still limited. Here, we conducted a laboratory germination experiment using five dominant species in Chongming Dongtan (Spartina alterniflora, Scirpus mariqueter, Phragmites australis, Suaeda glauca and Tripolium vulgare) to assess their germination performance in control (monoculture), allelopathy and mixture treatments. The results indicated that seeds could affect germination performance of neighbors through both allelopathy and salinity modification. Salinity of the solution in Petri dishes after seed germination decreased significantly in most species combinations in competition treatment, and was negatively correlated with the number of total germinated seeds. Seed leachate of invasive Spartina alterniflora significantly accelerated the germination of two native halophytes Suaeda glauca and Tripolium vulgare, but not Scirpus mariqueter and Phragmites australis. The salt absorption by Spartina alterniflora seeds had inconsistent effects compared with that of its seed leachate. On the other hand, seed leachate of native Scirpus mariqueter and Phragmites australis significantly slowed down the germination of invasive Spartina alterniflora. The effect of salinity modification of Scirpus mariqueter on Spartina alterniflora was positive, whereas that of other species was neutral. Considering seed-to-seed interactions is an important perspective to understand the underlying mechanisms of community dynamics, species diversity maintenance and invasion of alien species, and can improve the effectiveness in the management of invaded coastal wetlands.

Funder

National Natural Science Foundation of China

Shanghai Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3