Study on the Working Resistance of a Support under Shallowly Buried Gobs According to the Roof Structure during Periodic Weighting

Author:

Wang Chen,Zhu Cheng,Yuan Yong,Chen Zhongshun,Wang Wenmiao

Abstract

The phenomenon of dynamic pressure in the panel under shallowly buried gobs is obvious, resulting in limited and challenging support type selection. In this paper, theoretical analysis, numerical simulation and field measurement were combined to study the reasonable working resistance of the support in panels under shallowly buried gobs. First, the definition of the equivalent main key stratum (EMKS) was proposed. Then, a method of identifying the structure of the EMKS and broken key stratum blocks was given. The roof structure of the panel under a shallowly buried gob (PSBG) during strong periodic weighting could be divided into 12 types. Mechanical models of the roof structure were established, and the method to calculate the working resistance of the support was given. The Bulianta coal mine and Fengjiata coal mine in the Yushenfu Mining Area were taken as research objects. Based on the measured working resistance curve of the support, the structural morphology of key stratum blocks during strong periodic weighting was distinguished. On this basis, the working resistance of the support was calculated. Finally, FLAC2D numerical software was used to test the working resistance of the support. Based on the subsidence of the roof, horizontal displacement of the coal wall and the development range of the plastic zone in the surrounding rock, the working resistance of the support and adaptability of the surrounding rock control were verified and evaluated. The results show that it is reasonable to calculate the working resistance of the support based on the roof structure during strong periodic weighting. The research results can provide a reference for the scientific and rational selection of the support in a PSBG.

Funder

National key R & D program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3