Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea

Author:

Amini ErfanORCID,Asadi RojinORCID,Golbaz Danial,Nasiri Mahdieh,Naeeni Seyed Taghi Omid,Majidi Nezhad Meysam,Piras GiuseppeORCID,Neshat MehdiORCID

Abstract

The search for renewable energy supplies for today’s global energy demand, particularly ocean wave energy for coastal areas, has become undeniably widespread in the last two decades. The Caspian Sea represents an immense opportunity for using ocean renewable energy, especially considering its long shoreline. In this study, the locations with maximum potential wave energy were chosen in the central, eastern, and western zones of the Caspian Sea’s southern coasts. Accordingly, the wave and bathymetric data were used as the input to calculate the oscillating surge wave energy converter’s flap geometric dimensions based on previous studies. Then, the geometric model was designed, and then the wave energy converters were modeled in the Wave Energy Converter Simulator (WEC-Sim) module in the MATLAB software. Furthermore, eight models in each sea state were simulated to find the best value of the PTO damping coefficient, which led to the highest capture factor. Finally, all the external forces on the WEC’s flap and the converter’s power output results were compared, taking into account the effects of the flap height on the total power output. It was found that Nowshahr port has more potential than the Anzali and Amirabad ports, as the converter’s absorbed power proved to be 16.7 kW/m (Capture factor = 63%) at this site. Consequently, by conducting a comparative analysis between the selected sites, the excitation, radiation damping, and power take-off forces were scrutinized. The results show that the highest applied forces to the converter’s flap occurred at Nowshahr port, followed by the Anzali and Amirabad ports, due to the directional characteristics of the waves at the central coasts of the Caspian Sea.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3