A Concurrence Optimization Model for Low-Carbon Product Family Design and the Procurement Plan of Components under Uncertainty

Author:

Wang QiORCID,Qi Peipei,Li Shipei

Abstract

With the increase in pollution and people’s awareness of the environment, reducing greenhouse gas (GHG) emissions from products has attracted more and more attention. Companies and researchers are seeking appropriate methods to reduce the GHG emissions of products. Currently, product family design is widely used for meeting the diverse needs of customers. In order to reduce the GHG emission of products, some methods for low-carbon product family design have been presented in recent years. However, in the existing research, the related GHG emission data of a product family are given as crisp values, which cannot assess GHG emissions accurately. In addition, the procurement planning of components has not been fully concerned, and the supplier selection has only been considered. To this end, in this study, a concurrence optimization model was developed for the low-carbon product family design and the procurement plan of components under uncertainty. In the model, the relevant GHG emissions were considered as the uncertain number rather than the crisp value, and the uncertain GHG emissions model of the product family was established. Meanwhile, the order allocation of the supplier was considered as the decision variable in the model. To solve the uncertain optimization problem, a genetic algorithm was developed. Finally, a case study was performed to illustrate the effectiveness of the proposed approach. The results showed that the proposed model can help decision-makers to simultaneously determine the configuration of product variants, the procurement strategy of components, and the price strategies of product variants based on the objective of maximizing profit and minimizing GHG emission under uncertainty. Moreover, the concurrent optimization of low-carbon product family design and order allocation can bring the company greater profit and lower GHG emissions than just considering supplier selection in low-carbon product family design.

Funder

Natural Science Foundation of Zhejiang Province

Ningbo Natural Science Foundation

Ningbo philosophy and social planning project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3