Sustainable Manufacture of Bearing Bushing Parts

Author:

Hrițuc Adelina,Slătineanu Laurențiu,Dodun OanaORCID,Nagîț GheorgheORCID,Coteață Margareta,Boca Marius Andrei,Ermolai Vasile

Abstract

Bearing bushing parts are used to support other rotating moving parts. When these bearing bushings are made of bronze, their inner cylindrical surfaces can be finished by turning. The problem addressed in this paper was that of identifying an alternative for finishing by turning the inner cylindrical surfaces of bearing bushing parts by taking into account the specific sustainability requirements. Three alternatives for finishing turning the inner cylindrical surfaces of bearing bushings have been identified. The selection of the alternative that ensures the highest probability that the diameter of the machined surface is included in the prescribed tolerance field was made first by using the second axiom of the axiomatic design. It was thus observed that for the initial turning alternative, the probability of success assessed by using a normal distribution is 77.2%, while for the third alternative, which will correspond to a Maxwell–Boltzmann distribution, the probability of success is 92.1%. A more detailed analysis was performed using the analytic hierarchy process method, taking into account distinct criteria for assessing sustainability. The criteria for evaluating the sustainability of a cutting processing process were identified using principles from the systemic analysis. The application of the analytic hierarchy process method facilitated the approach of some detailed aspects of the sustainability of the alternatives proposed for finishing by turning the inner cylindrical surfaces of bearing bushings, including by taking into account economic, social, and environmental protection requirements.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3