Modeling of 3R (Reduce, Reuse and Recycle) for Sustainable Construction Waste Reduction: A Partial Least Squares Structural Equation Modeling (PLS-SEM)

Author:

Mohammed MusaORCID,Shafiq NasirORCID,Elmansoury Ali,Al-Mekhlafi Al-Baraa AbdulrahmanORCID,Rached Ehab Farouk,Zawawi Noor AmilaORCID,Haruna Abdulrahman,Rafindadi Aminu Darda’u,Ibrahim Muhammad Bello

Abstract

There is a lack of awareness and knowledge among the Malaysian construction industry about waste management reduction. Numerous nations worldwide have understood and have incorporated the concept of the 3R (reduce, reuse, and recycle) in waste management, and it has worked out well. This study investigated construction waste issues and developed a model for sustainable reduction by applying 3R using a partial least squares structural equation modeling PLS-SEM in Malaysia. The research methodology adopted the quantitative and qualitative approaches by sending a survey questionnaire to the relevant stakeholders to obtain their views or perceptions and interviewing an expert in the related field about waste reduction in the Malaysian construction industry. Three hundred thirty questionnaires were collected within six months of submission. The significant factors are determined using mean ranking for the reduce, reuse and recycle elements. Based on the results, the exploratory power of the study model is considered sustainable with R2 values of 0.83%. At the same time, the results of relationships between improving factors, policy-related factors, construction waste generated, and sustainable construction waste reduction were significant. Also, the findings revealed that the top factors for waste generation on reducing, reusing, and recycling are lack of design and documentation, and lack of guidance for effective construction waste-collecting. The paper will explore different and dynamic practices, such as recycling, reuse of construction waste management cost reduction, enabling stakeholders and managers to estimate and quantify the actual size of CWM costs and benefits for sustainable development goals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3