Using Phase Change Materials (PCMs) in a Hot and Humid Climate to Reduce Heat Gain and Energy Consumption

Author:

Bagazi Mohammad S.,Melaibari Ammar A.ORCID,Khoshaim Ahmed B.ORCID,Abu-Hamdeh Nidal H.ORCID,Alsaiari Abdulmohsen O.,Abulkhair Hani

Abstract

Twenty percent of the world’s energy is consumed by the construction sector, including commercial and residential buildings, where 13% is consumed by the residential sector only. Half of the total energy consumed by buildings in Saudi Arabia is specifically attributed to the hot summer season, which, unlike in many other countries in the Middle East, continues for more than 5 months annually. The use of a phase change material (PCM), as an insulator in building materials, can be a solution to provide a comfortable indoor temperature and reduce energy consumption. This study examined two different melting ranges for PCMs RT35 and RT35HC inserted into hollow clay bricks to investigate their thermal behavior and heat storage capacity and compare them with polystyrene foam. To perform this experiment, four chambers were constructed using cement plastering. The data were collected at Jeddah, Saudi Arabia, from mid-November 2020 to the end of February 2021. When the highest temperature was reached during the experiment, PCM RT35 provided a better cooling effect by 13% compared to 24% and 28.56% for PCM RT35HC and foam, respectively, compared to hollow bricks alone. However, when the lowest temperature was reached during the experiment, PCM RT35HC performed better than the other chambers in saving energy and keeping the chamber warm, which was 9.5% for the reference chamber, 7.0% for the foam chamber, and 2.8% for PCM RT35. The maximum energy saving of PCM RT35 was around 1920 kJ, which is around 0.533 kWh, for one wall only, and for PCM RT35HC, it was 2880 kJ, or 0.8 kWh, which can reduce energy consumption of the HVAC system by 97 kWh/m2 and 146 kWh/m2 per year, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. International Energy Outlook 2016 with Projections to 2040;Conti,2016

2. Electrical Data 2018,2020

3. Housing Survey Data,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3