Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel

Author:

Xu Zhisheng12,Zhen Yaxing12,Xie Baochao12,Sakepa Tagne Sylvain Marcial1,Zhao Jiaming12,Ying Houlin12ORCID

Affiliation:

1. School of Civil Engineering, Central South University (CSU), Changsha 410075, China

2. National Engineering Research Center of High-Speed Railway Construction Technology, Central South University, Changsha 410075, China

Abstract

The model-scale tunnel is used in this investigation to analyze the maximum smoke temperature rise of the interconnected tunnel for various longitudinal ventilation velocities, blockage ratios, and heat release rates where the fire is at the confluence of the underground interconnected tunnel. The results showed that the longitudinal ventilation velocities of both the ramp upstream of the fire source and the adjacent ramp influenced the maximum temperature rise under the underground interconnected tunnel, and the ventilation of both ramps jointly affected the maximum temperature rise. The change in the maximum temperature rise depends on who is more affected by the longitudinal ventilation velocity or the vehicle blockage ratio. As the longitudinal ventilation velocity in the interconnected tunnel increases, the convective heat transfer near the fire source increases, resulting in a decrease in the maximum temperature rise, and the effect of the blockage ratio on the maximum temperature rise is reduced. In this paper, a maximum temperature rise prediction model suitable for the case of blockage in the interconnected tunnel is proposed.

Funder

The Science and Technology Research and Development Program Project of China railway group limited

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3