CTF-PARCS Core Multi-Physics Computational Framework for Efficient LWR Steady-State, Depletion and Transient Uncertainty Quantification
Author:
Delipei Gregory K.ORCID,
Rouxelin PascalORCID,
Abarca AgustinORCID,
Hou JasonORCID,
Avramova MariaORCID,
Ivanov Kostadin
Abstract
Best Estimate Plus Uncertainty (BEPU) approaches for nuclear reactor applications have been extensively developed in recent years. The challenge for BEPU approaches is to achieve multi-physics modeling with an acceptable computational cost while preserving a reasonable fidelity of the physics modeled. In this work, we present the core multi-physics computational framework developed for the efficient computation of uncertainties in Light Water Reactor (LWR) simulations. The subchannel thermal-hydraulic code CTF and the nodal expansion neutronic code PARCS are coupled for the multi-physics modeling (CTF-PARCS). The computational framework is discussed in detail from the Polaris lattice calculations up to the CTF-PARCS coupling approaches. Sampler is used to perturb the multi-group microscopic cross-sections, fission yields and manufacturing parameters, while Dakota is used to sample the CTF input parameters and the boundary conditions. Python scripts were developed to automatize and modularize both pre- and post-processing. The current state of the framework allows the consistent perturbation of inputs across neutronics and thermal-hydraulics modeling. Improvements to the standard thermal-hydraulics modeling for such coupling approaches have been implemented in CTF to allow the usage of 3D burnup distribution, calculation of the radial power and the burnup profile, and the usage of Santamarina effective Doppler temperature. The uncertainty quantification approach allows the treatment of both scalar and functional quantities and can estimate correlation between the multi-physics outputs of interest and up to the originally perturbed microscopic cross-sections and yields. The computational framework is applied to three exercises of the LWR Uncertainty Analysis in Modeling Phase III benchmark. The exercises cover steady-state, depletion and transient calculations. The results show that the maximum fuel centerline temperature across all exercises is 2474K with 1.7% uncertainty and that the most correlated inputs are the 238U inelastic and elastic cross-sections above 1 MeV.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference43 articles.
1. Historical perspectives of BEPU research in US
2. VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion
3. NEAMS Workbench Status and Capabilities;Lefebvre,2019
4. MOOSE: Enabling massively parallel multiphysics simulation
5. Development of Multi-Physics and Multi-Scale Best Effort Modelling of Pressurized Water Reactor under Accidental Situations;Targa;Ph.D. Thesis,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献