PV Power Forecasting Based on Relevance Vector Machine with Sparrow Search Algorithm Considering Seasonal Distribution and Weather Type

Author:

Ma WentaoORCID,Qiu Lihong,Sun Fengyuan,Ghoneim Sherif S. M.ORCID,Duan JiandongORCID

Abstract

Accurate photovoltaic (PV) power forecasting is indispensable to enhancing the stability of the power grid and expanding the absorptive photoelectric capacity of the power grid. As an excellent nonlinear regression model, the relevance vector machine (RVM) can be employed to forecast PV power. However, the optimization of the free parameters is still a key problem for improving the performance of the RVM. Taking advantage of the strong global search capability, good stability, and fast convergence rate of the sparrow search algorithm (SSA), this paper optimizes the parameters of the RVM by using the SSA to develop an excellent RVM (called SSA-RVM). Consequently, a novel hybrid PV power forecasting model via the SSA-RVM is proposed to perform ultra-short-term (4 h ahead) prediction. In addition, the effects of seasonal distribution and weather type on PV power are fully considered, and different seasonal prediction models are established separately to improve the prediction capability. The benchmark is used to verify the accuracy of the SSA-RVM-based forecasting model under various conditions, and the experiment results demonstrate that the proposed SSA-RMV method outperforms the traditional RVM and support vector machine models, and it even shows a better prediction effect than the RVM models with other optimization approaches.

Funder

National Natural Science Foundation of China

Key Project of Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3