Natural Gas Sweetening Using an Energy-Efficient, State-of-the-Art, Solid–Vapor Separation Process

Author:

Ababneh HaniORCID,AlNouss AhmedORCID,Karimi IftekharORCID,Al-Muhtaseb ShaheenORCID

Abstract

With the anticipated rise in global demand for natural gas (NG) and liquefied natural gas (LNG), sour gas reserves are attracting the attention of the gas industry as a potential resource. However, to monetize these reserves, sour natural gas has to be sweetened by removing acid gases (carbon dioxide and/or hydrogen sulfide) before liquefaction. The solidification of these acid gases could be the basis for their separation from natural gas. In this study, a state-of-the art solid-vapor (SV) separation unit is developed for removal of acid gases from methane and simulated using a customized Aspen Plus operation unit. The operating principles and conditions, mathematical model, and performance results are presented for the SV unit. Further performance analyses, means of optimization and comparisons to conventional methods used by the industry were studied. Results showed that for similar sweet gas purity, the developed SV unit consumes only 27% of the energy required by the amine sweetening unit. Furthermore, it saves on capital costs, as it requires less equipment and does not suffer from high levels of corrosion.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. (2021). Royal Dutch Shell.

2. Controlled Freeze Zone™ for developing sour gas reserves;Kelley;Energy Procedia,2011

3. Wardzinski, J., Foss, M., and Delano, F. (2004). Interstate Natural Gas—Quality Specifications & Interchangeability. Cent. Energy Econ.

4. Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies;Maqsood;Rev. Chem. Eng.,2014

5. Ababneh, H., and Al-Muhtaseb, S.A. (2022). A review on the solid–liquid–vapor phase equilibria of acid gases in methane. Greenh. Gases Sci. Technol.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3