Simulation and Design of a Balanced-Field Electromagnetic Technique Sensor for Crack Detection in Long-Distance Oil and Gas Pipelines

Author:

Yang Lijian,Li Jiayin,Zheng Wenxue,Liu Bin

Abstract

Due to the extremely small size and arbitrary orientation of the cracks, a highly sensitive sensor based on the balanced-field electromagnetic technique was designed for in-line inspection of oil and gas pipeline cracks. A balanced-field electromagnetic technique sensor mutual inductance model was established and used to theoretically analyze the parameters affecting sensitivity. Finite element simulation was used to analyze the specific effects of the magnetically conductive medium, the number of coil turns, and the sensor lift-off height on the sensor output, respectively, and the sensor parameters of high sensitivity were determined. The detection effect of the sensor on the pipeline crack was tested by the single-sensor experiment and the pulling test. The results show that the designed balanced-field electromagnetic technique sensor is effective in detecting both circumferential and axial cracks of 0.5 to 6 mm in depth. As the crack depth increases, the sensitivity decreases and the detection voltage amplitude increases linearly. The sensitivity of the sensor is highest when detecting circumferential and axial cracks of 1 mm in depth at 1.76 and 0.87 mV/mm, respectively. In addition, the amplitude of the circumferential crack signal at the same depth is approximately twice that of the axial crack signal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3