Author:
Zhu Chuanpeng,Huang Pu,Li Yiguo
Abstract
To increase combustion efficiency and reduce pollutant emissions, this study presents an online closed-loop optimization method and its application in a boiler combustion system. To begin with, three adaptive dynamic models are established to predict NOx emission, the carbon content of fly ash (Cfh), and exhaust gas temperature (Teg), respectively. In these models, the orders of the input variables are considered to enable them to reflect the dynamics of the combustion system under load changes. Meanwhile, an adaptive least squares support vector machine (ALSSVM) algorithm is adopted to cope with the nonlinearity and the time-varying characteristics of the combustion system. Subsequently, based on the established models, an economic model predictive control (EMPC) problem is formulated and solved by a sequential quadratic programming (SQP) algorithm to calculate the optimal control variables satisfying the constraints on the control and control moves. The closed-loop optimization system is applied on a 600 MW boiler, and the performance analysis is conducted based on the operation data. The results show that the system can effectively increase boiler efficiency by about 0.5%.
Funder
National Key Technology Research and Development Program of China
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献