Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting

Author:

López Santos Miguel,García-Santiago XelaORCID,Echevarría Camarero Fernando,Blázquez Gil Gonzalo,Carrasco Ortega Pablo

Abstract

The energy generated by a solar photovoltaic (PV) system depends on uncontrollable factors, including weather conditions and solar irradiation, which leads to uncertainty in the power output. Forecast PV power generation is vital to improve grid stability and balance the energy supply and demand. This study aims to predict hourly day-ahead PV power generation by applying Temporal Fusion Transformer (TFT), a new attention-based architecture that incorporates an interpretable explanation of temporal dynamics and high-performance forecasting over multiple horizons. The proposed forecasting model has been trained and tested using data from six different facilities located in Germany and Australia. The results have been compared with other algorithms like Auto Regressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Multi-Layer Perceptron (MLP), and Extreme Gradient Boosting (XGBoost), using statistical error indicators. The use of TFT has been shown to be more accurate than the rest of the algorithms to forecast PV generation in the aforementioned facilities.

Funder

Centre for Industrial Technological Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference69 articles.

1. The European Green Deal,2019

2. Solar PV,2021

3. Future of Solar Photovoltaic Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects A Global Energy Transformation Paper About IRENA,2019

4. On recent advances in PV output power forecast

5. World Energy Outlook 2021,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3