Cascade System for Biomineralization in Cement: Project, Construction and Operationalization to Enhance Building Energy Efficiency

Author:

Ferreira Brasileiro Pedro Pinto,Cabral Roque Bruno Augusto,Batista Brandão YanaORCID,Casazza Alessandro AlbertoORCID,Converti AttilioORCID,Benachour MohandORCID,Asfora Sarubbo LeonieORCID

Abstract

Anthropogenic and natural actions cause internal and external fractures in concrete. To recover these structures, bio-concretes have been developed with bacteria of the genus Bacillus. These microorganisms consume calcium lactate, synthesize calcium carbonate and biomineralize CaCO3 crystals within the structures of concrete. The aim of the present study was to construct equipment, denominated “Cascade System for Biomineralization in Cement” (CSBC), to determine the limiting velocity of the biomineralization of CaCO3. The construction of the equipment took into consideration chemical and biochemical phenomena responsible for biomineralization. Parts made with 3D printing and a circuit with Arduino UNO R3 board were used in the assembly of the system. The prototype proved to be stable and can be considered a promising tool for future application in research of the regeneration of reinforced concreted in a practical, fast and economical way, especially to the energy sector.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3