Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market

Author:

Patil Ganesh Sampatrao,Mulla Anwar,Dawn SubhojitORCID,Ustun Taha SelimORCID

Abstract

The changeable nature of renewable sources creates difficulties in system security and stability. Therefore, it is necessary to study system risk in several power system scenarios. In a wind-integrated deregulated power network, the wind farm needs to submit the bid for its power-generating quantities a minimum of one day ahead of the operation. The wind farm submits the data based on the expected wind speed (EWS). If any mismatch occurs between real wind speed (RWS) and expected wind speed, ISO enforces the penalty/rewards to the wind farm. In a single word, this is called the power market imbalance cost, which directly distresses the system profit. Here, solar PV and battery energy storage systems are used along by the wind farm to exploit system profit by grasping the negative outcome of imbalance cost. Along with system profit, the focus has also been on system risk. The system risk has been calculated using the risk assessment factors, i.e., Value-at-Risk (VaR) and Cumulative Value-at-risk (CVaR). The work is performed on a modified IEEE 14 and modified IEEE 30 bus test system. The solar PV-battery storage system can supply the demand locally first, and then the remaining power is given to the electrical grid. By using this concept, the system risk can be minimized by the incorporation of solar PV and battery storage systems, which have been studied in this work. A comparative study has been performed using three dissimilar optimization methods, i.e., Artificial Gorilla Troops Optimizer Algorithm (AGTO), Artificial Bee Colony Algorithm (ABC), and Sequential Quadratic Programming (SQP) to examine the consequence of the presented technique. The AGTO has been used for the first time in the risk assessment and alleviation problem, which is the distinctiveness of this work.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3