Radio-, Thermo- and Photoluminescence Properties of Lu2O3:Eu and Lu2O3:Tb Nanopowder and Film Scintillators

Author:

Popielarski P.,Zeler J.,Bolek P.,Zorenko T.,Paprocki K.,Zych E.,Zorenko Yu.

Abstract

This work is dedicated to the preparation and characterization of the radio-, thermo-, and photoluminescent properties of Lu2O3:Eu and Lu2O3:Tb nanopowder (NPs) scintillators, prepared by means of hydrothermal processing, and their film analogues made of these NPs by the spin coating method. The luminescent properties of NPs and films were characterized by cathodoluminescence (CL), photoluminescence (PL), X-ray excited radioluminescence (RL), and thermoluminescence (TL) at low and high temperatures. In Lu2O3:Eu NPs and films, mostly the luminescence of Eu3+ ions occupying the C2 site of the host, with the most intensive peaks at 611.6 nm and a decay time of 1.5 ms, was observed. On the contrary, two types of Tb3+ centers in the C2 and C3i sites with the main emission lines at 542.4 and 544.0 nm and the corresponding 4f→5d excitation bands at 270 and 305 nm and decay times of t1/e = 2.17 and 3.96 ms were observed in the case of Lu2O3:Tb NPs and films. Indications were noted that Tb3+ in the C3i symmetry position was most active in the CL spectra of Lu2O3:Tb NPs and a respective film. Thermoluminescent peaks at 110 °C and 170 °C for Lu2O3:Eu NPs and at 75 °C and 120 °C in Lu2O3:Tb NPs were observed corresponding to the hole and electron traps, respectively. Significantly different onsets of temperature quenching of Eu3+ and Tb3+ luminescence in Lu2O3:Eu and Lu2O3:Tb NPs were found at ~90 °C and ~320 °C, respectively.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3