Fusion of Neuro-Signals and Dynamic Signatures for Person Authentication

Author:

Kumar PradeepORCID,Saini RajkumarORCID,Kaur BarjinderORCID,Roy Partha Pratim,Scheme ErikORCID

Abstract

Many biometric systems based on physiological traits such as ones facial characteristics, iris, and fingerprint have been developed for authentication purposes. Such security systems, however, commonly suffer from impersonation attacks such as obfuscation, abrasion, latent samples, and covert attack. More conventional behavioral methods, such as passwords and signatures, suffer from similar issues and can easily be spoofed. With growing levels of private data readily available across the internet, a more robust authentication system is needed for use in emerging technologies and mobile applications. In this paper, we present a novel multimodal biometric user authentication framework by combining the behavioral dynamic signature with the the physiological electroencephalograph (EEG) to restrict unauthorized access. EEG signals of 33 genuine users were collected while signing on their mobile phones. The recorded sequences were modeled using a bidirectional long short-term memory neural network (BLSTM-NN) based sequential classifier to accomplish person identification and verification. An accuracy of 98.78% was obtained for identification using decision fusion of dynamic signatures and EEG signals. The robustness of the framework was also tested against 1650 impersonation attempts made by 25 forged users by imitating the dynamic signatures of genuine users. Verification performance was measured using detection error tradeoff (DET) curves and half total error rate (HTER) security matrices using true positive rate (TPR) and false acceptance rate (FAR), resulting in 3.75% FAR and 1.87% HTER with 100% TPR for forgery attempts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Biometric Solutions: For Authentication in an E-world;Zhang,2012

2. An Overview of Biometrics Methods;Sharif,2019

3. Convolutional Neural Networks Using Dynamic Functional Connectivity for EEG-Based Person Identification in Diverse Human States

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3