A Bidirectional Knudsen Pump with a 3D-Printed Thermal Management Platform

Author:

Cheng Qisen,Qin YutaoORCID,Gianchandani Yogesh B.

Abstract

This paper reports on a bidirectional Knudsen pump (KP) with a 3D-printed thermal management platform; the pump is intended principally for microscale gas chromatography applications. Knudsen pumps utilize thermal transpiration, where non-viscous flow is created against a temperature gradient; no moving parts are necessary. Here, a specialized design leverages 3D direct metal laser sintering and provides thermal management that minimizes loss from a joule heater located on the outlet side of KP, while maintaining convective cooling on the inlet side. The 3D-KP design is integrative and compact, and is specifically intended to simplify assembly. The 3D-KP pumping area is ≈1.1 cm2; with the integrated heat sink, the structure has a footprint of 64.2 × 64.2 mm2. Using mixed cellulose ester (MCE) membranes with a 25 nm average pore diameter and 525 μm total membrane thickness as the pumping media, the 3D-KP achieves a maximum flow rate of 0.39 sccm and blocking pressure of 818.2 Pa at 2 W input power. The operating temperature is 72.2 °C at ambient room temperature. In addition to MCE membranes, anodic aluminum oxide (AAO) membranes are evaluated as the pumping media; these AAO membranes can accommodate higher operating temperatures than MCE membranes. The 3D-KP with AAO membranes with 0.2 μm average pore diameter and 531 μm total membrane thickness achieves a maximum flow rate of 0.75 sccm and blocking pressure of 496.1 Pa at 9.8 W at an operating temperature of 191.2 °C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on rapid prediction of flow field in a knudsen compressor based on multi-fidelity reduced-order models;International Journal of Hydrogen Energy;2024-10

2. Numerical study of microscale gas pump based on surface acoustic waves;Physics of Fluids;2024-03-01

3. Some properties of a gas flow submitted to a temperature gradient;International Journal of Heat and Mass Transfer;2023-11

4. Temperature gradient effects on gas flow through microporous media;Experimental Thermal and Fluid Science;2023-10

5. Estimation of Energy and Time Usage in 3D Printing With Multimodal Neural Network;2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3