Abstract
In the fast tool servo (FTS) system for microstructure surface cutting, the dynamic voltage hysteresis of piezoelectric actuators (PEAs) and the cutting force produced in the manufacturing affect the driving accuracy and the cutting performance. For a multi-input-single-output (MISO) cutting system, in this paper, a dynamic hysteresis model based on a rate-dependent Prandtl–Ishlinskii model is proposed. A backpropagation neural network (BPNN) is established to describe the cross-coupling effect between the applied voltage and external load. An inverse dynamic model is developed to compensate the nonlinearity of PEAs. The accuracy of the model and its inverse is discussed and the performance of the inverse feedforward compensator is validated through experiments.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献