Martensitic Transition and Superelasticity of Ordered Heat Treatment Ni-Mn-Ga-Fe Microwires

Author:

Liu Yanfen,Lang Zirui,Shen HongxianORCID,Liu JingshunORCID,Sun JianfeiORCID

Abstract

The preparation of Ni-Mn-Ga and Ni-Mn-Ga-Fe master alloy ingots and microwires was completed by high vacuum electric furnace melt melting furnace and melt drawing liquid forming equipment, and the lattice dislocations and defects formed inside the microwires during the preparation process were corrected by stepwise ordered heat treatment. The micro-structure and phase structure were characterized using a SEM field emission scanning electron microscopy and an XRD diffractometer combined with an EDS energy spectrum analyzer; the martensitic phase transformation process of the microwires was analyzed using a DSC differential scanning calorimeter; and the superelasticity of the microwires was tested by a Q800 dynamic mechanical analyzer. The results indicate that Fe doping can refine the grain, transform the phase structure from parent phase to single 7M martensite, reduce the number of martensitic variants, and increase the mobility of the twin grain boundary interface. The MT phase transition temperature (MS) is substantially increased in the martensite transition (MT) process by the increase of the number of free electrons in its lattice. During the superelasticity (SE) test, both microwires displayed superior recover-ability of SE curves, and the Fe doping curves showed similar characteristics of “linear superelasticity”, showing higher critical stress values and complete SE in the experiment. The critical stress satisfies the Clausius-Clapeyron equation and exhibits higher temperature sensitivity than Ni-Mn-Ga microwires.

Funder

National Natural Science Foundation of China Projects

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3