Microbiologically Influenced Corrosion Mechanism of Ferrous Alloys in Marine Environment

Author:

Khan M. Saleem,Liang Tao,Liu Yuzhi,Shi Yunzhu,Zhang Huanhuan,Li Hongyu,Guo Shifeng,Pan Haobo,Yang Ke,Zhao Ying

Abstract

In marine environments, microbial attacks on metallic materials result in microbiologically influenced corrosion (MIC), which could cause severe safety accidents and high economic losses. To date, MIC of a number of metallic materials ranging from common steels to corrosion-resistant ferrous alloys has been reported. The MIC process has been explained based on (1) bio-catalyzed oxygen reduction; (2) kinetics alternation of the corrosion process by increasing the mass transport of the reactants and products; (3) production of corrosive substances; and (4) generation of auxiliary cathodic reactants. However, it is difficult to have a clear understanding of the MIC mechanism of ferrous alloys due to the interdisciplinary nature of MIC and lack of deep knowledge about the interfacial reaction between the biofilm and ferrous alloys. In order to better understand the effect of the MIC process on ferrous alloys, here we comprehensively summarized the process of biofilm formation and MIC mechanisms of ferrous alloys.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Commission of Shenzhen

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3