Surface Modification of Ti–30Ta Alloy by Deposition of P(VDF-TrFE)/BaTiO3 Coating for Biomedical Applications

Author:

Ribeiro Larissa Mayra SilvaORCID,Costa da Rosa Simões Luziane Aparecida,Espanhol-Soares Melina,Carvalho Teles Vinicius,Ribeiro Tainara Aparecida NunesORCID,Capellato Patrícia,Vasconcelos Fré Lucas Victor Benjamim,Kuffner Bruna Horta Bastos,Saddow Stephen Edward,Sachs DanielaORCID,Rosifini Alves Claro Ana Paula,Gimenes Rossano

Abstract

This study aims to promote an adequate methodology for coating an experimental Ti-30Ta alloy with P(VDF-TrFE)/BaTiO3. The combination of a copolymer with a ceramic has not been used until now. Ti-30Ta is an excellent choice to replace current alloys in the global market. The composite deposition on the Ti-30Ta substrate was performed by a spray coating process and at low temperature using two different surface modifications: surface acidic etching and surface polishing. Characterization was divided into four areas: (I) the substrate surface treatments used and their influences on the adhesion process were evaluated using surface energy, wettability, and roughness analyses; (II) the properties of the composite film, which were carried out using X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC); (III) the study of the adhesion of the film on the substrate, which was performed by a scratch test; (IV) the final product, which was evaluated to determine the surface properties after the coating process. Biofilm formation using Staphylococcus aureus and Staphylococcus epidermidis strains and a hemocompatibility test were performed as biological assays. The results indicated that the P(VDF-TrFE)/BaTiO3 film showed high thermal stability (up to ≈450 °C); the FTIR and DSC tests indicated the presence of the β phase, which means that the material presents a piezoelectric nature; and the scratch test showed that the samples with the polish treatment provided a better adhesion of the film with an adhesion strength of ~10 MPa. From the SEM analysis, it was possible to determine that the spray deposition coating process resulted in a well-applied film as evidenced by its homogeneity. Microbiological tests showed that for Staphylococcus aureus, the bacterial growth in the coated Ti-30Ta presented no significant differences when compared to the alloy without coating. However, for Staphylococcus epidermidis, there was considerable growth on the coated Ti-30Ta, when compared to the non-coated alloy, indicating that the film surface may have favored bacterial growth. The hemolysis assay showed that the coated material presents hemocompatible characteristics when in contact with blood cells. The results obtained indicate that the Ti-30Ta alloy coated with P(VDF-TrFE)/BaTiO3 is a promising alternative for implant applications, due to its biocompatible properties, simplicity, and low cost.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3