Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina

Author:

Shen LingORCID,Roullier CatherineORCID,Porée François-HuguesORCID,Gaslonde ThomasORCID,Riffault-Valois Ludivine,Grovel OlivierORCID,Ruprich-Robert GwenaëlORCID,Chapeland-Leclerc FlorenceORCID

Abstract

The coprophilous ascomycete Podospora anserina is known to have a high potential to synthesize a wide array of secondary metabolites (SMs). However, to date, the characterization of SMs in this species, as in other filamentous fungal species, is far less than expected by the functional prediction through genome mining, likely due to the inactivity of most SMs biosynthesis gene clusters (BGCs) under standard conditions. In this work, our main objective was to compare the global strategies usually used to deregulate SM gene clusters in P. anserina, including the variation of culture conditions and the modification of the chromatin state either by genetic manipulation or by chemical treatment, and to show the complementarity of the approaches between them. In this way, we showed that the metabolomics-driven comparative analysis unveils the unexpected diversity of metabolic changes in P. anserina and that the integrated strategies have a mutual complementary effect on the expression of the fungal metabolome. Then, our results demonstrate that metabolite production is significantly influenced by varied cultivation states and epigenetic modifications. We believe that the strategy described in this study will facilitate the discovery of fungal metabolites of interest and will improve the ability to prioritize the production of specific fungal SMs with an optimized treatment.

Funder

Université Paris Cité

China Scholarship Council

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3