OsCERK1 Contributes to Cupric Oxide Nanoparticles Induced Phytotoxicity and Basal Resistance against Blast by Regulating the Anti-Oxidant System in Rice

Author:

Chen Ya,Liu Zhiquan,Meng Shuai,Shen Zhenan,Shi HuanbinORCID,Qiu Jiehua,Lin Fucheng,Zhang Shu,Kou YanjunORCID

Abstract

CuO NPs (cupric oxide nanoparticles) are widely used in various fields due to their high electrical conductivity, electronic correlation effect, and special physical property. Notably, CuO NPs have good application prospects in agricultural production because of its antifungal activity to prevent crop diseases. However, the increasing release of CuO NPs into the environment has resulted in a serious threat to the ecosystem, including plants. Previous studies have reported the toxicity of CuO NPs on rice, but little is known about the underlying molecular mechanisms or specific genes involved in the response to CuO NPs. In this study, we found that the rice well-known receptor Chitin Elicitor Receptor Kinase 1 (OsCERK1), which is essential for basal resistance against pathogens, is involved in CuO NPs stress in rice. Knockout of OsCERK1 gene resulted in enhanced tolerance to CuO NPs stress. Furthermore, it was revealed that OsCERK1 reduces the tolerance to CuO NPs stress by regulating the anti-oxidant system and increasing the accumulation of H2O2 in rice. In addition, CuO NPs treatment significantly enhances the basal resistance against M. oryzae which is mediated by OsCERK1. In conclusion, this study demonstrated a dual role of OsCERK1 in response to CuO NPs stress and M. oryzae infection by modulating ROS accumulation, which expands our understanding about the crosstalk between abiotic and biotic stresses.

Funder

National Natural Science Foundation of China

key R&D project of China National Rice Research Institute

Zhejiang Science and Technology Major Program on Rice New Variety Breeding

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3