Demonstration and Evaluation of 3D Winds Generated by Tracking Features in Moisture and Ozone Fields Derived from AIRS Sounding Retrievals

Author:

Santek David,Nebuda Sharon,Stettner Dave

Abstract

For more than 15 years, polar winds from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery have been generated by the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for Meteorological Satellite Studies (CIMSS). These datasets are a NOAA National Environmental Satellite, Data, and Information Service (NESDIS) operational satellite product that is used at more than 10 major numerical weather prediction (NWP) centers worldwide. The MODIS polar winds product is composed of both infrared window (IR-W) and water vapor (WV) tracked features. The WV atmospheric motion vectors (AMV) yield a better spatial distribution than the IR-W since both cloud and clear-sky features can be tracked in the WV images. As the new generation polar satellite-era begins with the Suomi National Polar-orbiting Partnership (S-NPP), there is currently no WV channel on the Visible/Infrared Imager/Radiometer Suite (VIIRS), resulting in a data gap with only IR-W derived AMVs possible. This scenario presents itself as an opportunity to evaluate hyperspectral infrared moisture retrievals from consecutive overlapping satellite polar passes to extract atmospheric motion from clear-sky regions on constant (and known) pressure surfaces, i.e., estimating winds in retrieval space rather than radiance space. Perhaps most significantly, this method has the potential to provide vertical wind profiles, as opposed to the current MODIS-derived single-level AMVs. In this study, the winds technique is applied to Atmospheric Infrared Sounder (AIRS) moisture retrievals from NASA’s Aqua satellite. The resulting winds are assimilated into the Goddard Earth Observing System Model, Version 5 (GEOS-5). The results are encouraging, as the AIRS retrieval polar AMVs have a similar quality as the MODIS AMVs and exhibit a positive impact in the hemispheric Day 4.5 to 6.5 forecasts for a one-month experiment in July 2012.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference27 articles.

1. Failure to Prepare for Extreme Weather Costs Billionshttp://www.usatoday.com/story/news/nation/2014/02/12/costs-unpreparedness-critical-weatherevents/5417257/

2. Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3