On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal)

Author:

Bouchard Benjamin,Eeckman Judith,Dedieu Jean-Pierre,Delclaux François,Chevallier PierreORCID,Gascoin SimonORCID,Arnaud YvesORCID

Abstract

In the central part of the Hindu Kush Himalayan region, snowmelt is one of the main inputs that ensures the availability of surface water outside the monsoon period. A common approach for snowpack modeling is based on the degree day factor (DDF) method to represent the snowmelt rate. However, the important seasonal variability of the snow processes is usually not represented when using a DDF method, which can lead to large uncertainties for snowpack simulation. The SPOT-VGT and the MODIS-Terra sensors provide valuable information for snow detection over several years. The aim of this work was to use those data to parametrize the seasonal variability of the snow processes in the hydrological distributed snow model (HDSM), based on a DDF method. The satellite products were corrected and combined in order to implement a database of 8 day snow cover area (SCA) maps over the northern part of the Dudh Koshi watershed (Nepal) for the period 1998–2017. A revisited version of the snow module of the HDSM model was implemented so as to split it into two parameterizations depending on the seasonality. Corrected 8 day SCA maps retrieved from MODIS-Terra were used to calibrate the seasonal parameterization, through a stochastic method, over the period of study (2013–2016). The results demonstrate that the seasonal parameterization reduces the error in the simulated SCA and increases the correlation with the MODIS SCA. The two-set version of the model improved the yearly RMSE from 5.9% to 7.7% depending on the basin, compared to the one-set version. The correlation between the model and MODIS passes from 0.73 to 0.79 in winter for the larger basin, Phakding. This study shows that the use of a remote sensing product can improve the parameterization of the seasonal dynamics of snow processes in a model based on a DDF method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Global warming of 1.5 C, summary for policy makers;Allen;Intergov. Panel Clim. Chang.,2018

3. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation

4. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow

5. The changing water cycle: the need for an integrated assessment of the resilience to changes in water supply in High‐Mountain Asia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3