Dynamics of the Net Precipitation in China from 2001 to 2020

Author:

Pan Jing12ORCID,Ji Yongyue12,Yan Lingyun12,Luo Yixia12,Chen Jilong1

Affiliation:

1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Net precipitation (NP) is the primary source of soil water essential for the functioning of vegetated ecosystems. By quantifying NP as the difference between gross precipitation and canopy interception evaporation, this study examined the dynamics of NP in China from 2001 to 2020 and the contribution of environmental factors to NP variations was investigated. The findings revealed a multiyear mean NP of 674.62 mm, showcasing a 2.93 mm/yr increase. The spatiotemporal variations in NP were mainly attributed to a remarkable increase in precipitation rather than canopy interception. Notably, climate (temperature, wind speed, surface solar radiation downward and vapor pressure deficit) and vegetation factors (leaf area index and net primary productivity) played a dominant role in NP in 61.53% and 15.39% of China, respectively. The dominant factors contributing to NP changes were vapor pressure deficit (mean contribution rate: −43.68%), temperature (mean contribution rate: 11.69%), and leaf area index (mean contribution rate: 2.13%). The vapor pressure deficit negatively exerts a negative influence on the southern and eastern regions. Temperature and leaf area index have the greatest effect on the northeastern and southwestern regions, respectively. The results provide valuable insights into the pivotal role of climatic and vegetation factors in ecohydrological cycles.

Funder

Chongqing Municipal Bureau of Water Resources

Central Guidance on Local Science and Technology Development Fund of Chongqing Municipality

Chongqing Science and Technology project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3