The Time Lag Effects and Interaction among Climate, Soil Moisture, and Vegetation from In Situ Monitoring Measurements across China

Author:

Wang Jie123,Bao Zhenxin2345ORCID,Wang Guoqing234ORCID,Liu Cuishan23,Xie Mingming23,Wang Bin23,Zhang Jianyun123

Affiliation:

1. School of Civil Engineering, Tianjin University, Tianjin 300354, China

2. Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China

4. Yangtze Institute for Conservation and Development, Nanjing 210098, China

5. School of Hydraulic Engineering, Nanchang Institute of Technology, Nanchang 330029, China

Abstract

The interaction between soil moisture (SM) and vegetation dynamics has been proven in previous studies. In situ measurements have provided reliable data to investigate and validate the time effect in different zones, which is important in the hydrology and agriculture fields. There were 845 SM in situ monitoring measurements utilized with the correlation between SM and vegetation across various soil depths and climate zones in China. The impact of climate and teleconnection factors on SM and the leaf area index (LAI) are also discussed. The results indicate that SM increases from northwest to southeast in China. The time lag responses of SM to temperature, precipitation, relative humidity, and sunshine duration are 0–3 days, 3–7 days, 1–3 days, and 3–15 days, respectively. The LAI is most strongly correlated with the climate of the current month. When the LAI leads SM, a negative correlation is observed, whereas a positive correlation is observed when SM leads the LAI. This proves that vegetation growth restricts the increase in SM, and soil drying further restricts the growth of vegetation. There was a response time of 2–4 months between the LAI and SM. The effect of vegetation and deeper SM was significant in the arid zone, while they were coupled with shallow SM in the humid zone. Additionally, the El Niño–Southern Oscillation (ENSO) showed a significant positive correlation with SM in 2015–2016 with signals of 9–14 months. The results provide support for balancing the contradiction between future vegetation restoration and water resource scarcity.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3