Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment

Author:

Zandler Harald1ORCID,Samimi Cyrus23ORCID

Affiliation:

1. Department of Geography and Regional Science, Geospatial Technologies, University of Graz, Heinrichstr. 36, 8010 Graz, Austria

2. Climatology Research Group, University of Bayreuth, 95447 Bayreuth, Germany

3. Bayreuth Centre of Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany

Abstract

The cooling potential of tree species in Central European cities is insufficiently studied during extreme heat and drought, although a stronger surge in heatwaves compared to the global average is observed in this region. Remote sensing-based thermal surveys are an important tool to shed light on the mitigation effects of green infrastructure, but approaches covering extreme events are scarce. In this study, we present a simple, low-cost thermal airborne methodology that covers the current daily heat record in 2022, after the second warmest and third driest spring-to-summer period since 1949, in the medium-sized German city of Forchheim. We found that in spite of record-breaking heat and drought conditions, trees still had a considerable cooling potential with surface temperatures of 2 °C to 6 °C below air temperatures. Tree species were characterized by substantial median differences in tree surface temperatures up to 3.64 °C. Conifers and drought-sensitive broadleaf species showed the highest temperatures during the extreme event, while riparian species with potentially good water provision showed the highest cooling potential. In addition to tree species, imperviousness and tree NDVI were important variables for urban tree surface temperature, showing positive (imperviousness) and negative (NDVI) correlations with tree surface temperatures. Our study provides a methodological remote sensing example for the spontaneous and rapid coverage of extreme events, documenting the benefits of tree species in the urban context.

Funder

University of Graz

University of Bayreuth

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3