Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies

Author:

Brown Luke A.12ORCID,Morris Harry23ORCID,MacLachlan Andrew24ORCID,D’Adamo Francesco25ORCID,Adams Jennifer67,Lopez-Baeza Ernesto89ORCID,Albero Erika8,Martínez Beatriz8ORCID,Sánchez-Ruiz Sergio8ORCID,Campos-Taberner Manuel8ORCID,Lidón Antonio10ORCID,Lull Cristina10ORCID,Bautista Inmaculada10ORCID,Clewley Daniel11,Llewellyn Gary1213,Xie Qiaoyun14,Camacho Fernando15,Pastor-Guzman Julio216ORCID,Morrone Rosalinda317,Sinclair Morven3ORCID,Williams Owen2ORCID,Hunt Merryn218,Hueni Andreas6ORCID,Boccia Valentina19,Dransfeld Steffen19,Dash Jadunandan2

Affiliation:

1. School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK

2. School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK

3. Climate and Earth Observation Group, National Physical Laboratory, Teddington TW11 0LW, UK

4. The Bartlett Centre for Advanced Spatial Analysis, University College London, London W1T 4TJ, UK

5. Centre for Ecological Research and Forestry Applications (CREAF), 08193 Barcelona, Spain

6. Department of Geography, University of Zürich, 8057 Zürich, Switzerland

7. European Commission Joint Research Centre, 21027 Ispra, Italy

8. Departament de Física de la Terra i Termodinàmica, Facultat de Física, Universitat de València, 46100 Burjassot, Spain

9. Albavalor S.L.U., Parc Científic Universitat de València, 46980 Paterna, Spain

10. Research Group in Forest Science and Technology (Re-ForeST), Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain

11. Natural Environment Research Council Earth Observation Data Acquisition and Analysis Service (NEODASS), Plymouth Marine Laboratory, Plymouth PL1 3DH, UK

12. 2Excel Geo, Sywell, Northampton NN6 0BN, UK

13. Natural Environment Research Council Airborne Research Facility (NERC ARF), British Antarctic Survey, Cambridge CB3 0ET, UK

14. Department of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, WA 6009, Australia

15. Earth Observation Laboratory (EOLAB), 46980 Paterna, Spain

16. Tecnológico Nacional de México/IT Bahía de Banderas, Crucero a Punta de Mita s/n, Bahía de Banderas, Nayarit 63734, Mexico

17. Starion, 00044 Frascati, Italy

18. UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster LA1 4AP, UK

19. European Space Research Institute, European Space Agency, 00044 Frascati, Italy

Abstract

As an unprecedented stream of decametric hyperspectral observations becomes available from recent and upcoming spaceborne missions, effective algorithms are required to retrieve vegetation biophysical and biochemical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC). In the context of missions such as the Environmental Mapping and Analysis Program (EnMAP), Precursore Iperspettrale della Missione Applicativa (PRISMA), Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), and Surface Biology Geology (SBG), several retrieval algorithms have been developed based upon the turbid medium Scattering by Arbitrarily Inclined Leaves (SAIL) radiative transfer model. Whilst well suited to cereal crops, SAIL is known to perform comparatively poorly over more heterogeneous canopies (including forests and row-structured crops). In this paper, we investigate the application of hybrid radiative transfer models, including a modified version of SAIL (rowSAIL) and the Invertible Forest Reflectance Model (INFORM), to such canopies. Unlike SAIL, which assumes a horizontally homogeneous canopy, such models partition the canopy into geometric objects, which are themselves treated as turbid media. By enabling crown transmittance, foliage clumping, and shadowing to be represented, they provide a more realistic representation of heterogeneous vegetation. Using airborne hyperspectral data to simulate EnMAP observations over vineyard and deciduous broadleaf forest sites, we demonstrate that SAIL-based algorithms provide moderate retrieval accuracy for LAI (RMSD = 0.92–2.15, NRMSD = 40–67%, bias = −0.64–0.96) and CCC (RMSD = 0.27–1.27 g m−2, NRMSD = 64–84%, bias = −0.17–0.89 g m−2). The use of hybrid radiative transfer models (rowSAIL and INFORM) reduces bias in LAI (RMSD = 0.88–1.64, NRMSD = 27–64%, bias = −0.78–−0.13) and CCC (RMSD = 0.30–0.87 g m−2, NRMSD = 52–73%, bias = 0.03–0.42 g m−2) retrievals. Based on our results, at the canopy level, we recommend that hybrid radiative transfer models such as rowSAIL and INFORM are further adopted for hyperspectral biophysical and biochemical variable retrieval over heterogeneous vegetation.

Funder

European Space Agency

European Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3