Abstract
The critical infrastructure is constantly under cyber and physical threats. Applying security controls without guidance or traceability can create a false sense of security. Security standards facilitate security knowledge and control best practices in a more systematic way. However, the number of standards is continually increasing. Product providers that operate in multiple geographical regions often face the obligation to comply with multiple standards simultaneously. This introduces the problem of the convenient interpretation of different standards. Thus, a comprehensive analysis of the requirements from different security standards and guidelines applicable to the smart grid has been performed to detect similarities that can be shaped into entities of the conceptual model for requirement representation. The purpose of the model—presented in a form of a Unified Modeling Language (UML) class diagram—is to give product providers a canonical way to map requirements from arbitrary standards, guidelines, and regulations and accelerate the cross-standard compliance readiness by defining priority for requirement implementation. In addition, the research showed that multiple vectors should impact the priority of the implementation of the security controls defined through the requirements: domain affiliation, the essence of the requirement, associated threats, risks, and social dependencies between actors involved in the implementation. To examine the model correctness, NISTIR 7628—de facto smart grid standard—was used to provide insights into how the model would be used for requirements implementation tracking. The structure of individual requirements was analyzed to detect the building blocks and extract relevant parts that can be mapped to the model components. Further, all requirements were classified into one of the defined domains to provide the basis for referencing similar requirements from different standards. Finally, one arbitrary requirement was used to demonstrate model usage, and depict all available information that can be provided to the users in a custom-made scenario where the need arises to have simultaneous alignment with three standards—NISTIR 7628, NIST 800-53, and IEC 62443-3-3.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. First step into automation of security assessment of critical infrastructures;Sustainable Energy, Grids and Networks;2023-12
2. Ensuring Privacy Policy Compliance of Wearables with IoT Regulations;2023 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA);2023-11-01