A Deterioration Diagnosis Circuit of a Lithium-Ion Battery Using Microcomputer Implementing Z-Transform Convolution

Author:

Yoshioka NaoyukiORCID,Nagaoka Naoto

Abstract

The deterioration of lithium-ion batteries has been detected by an increase in the battery impedance by means of an alternating current method or a battery capacity test. These methods require an interruption of the operation because the battery has to be removed. A method estimating equivalent circuit parameters of a lithium-ion battery during operation is proposed in this article. The increase in the internal impedance has a close relation to the deterioration of the battery. The circuit is expressed by a resister and an RC parallel circuit connected in series. The parameters can be estimated by applying a convolution technique to the voltage and current fluctuation of the battery during operation. A diagnosis circuit using a microcomputer is developed using a simple algorithm employing z-transformation in the parameter estimation. The estimated parameters depend on its state of charge (SOC) and ambient temperature. The SOC dependency is solved by estimating timing, and the temperature dependency is corrected by a function derived in this article. The deterioration diagnosis of the battery can be applied to a solar power generation system, and the feasibility is discussed in this article.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference12 articles.

1. Large Scale Battery Storage System and its Lifetime Estimation

2. Electric Power Storage Technology for Natural Energy Generations

3. Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes—Secondary Lithium Cells and Batteries for Portable Applicationshttp://www.zrlklab.com/uploads/image/202004/5ea79eb64c6fd.pdf

4. Development of Battery Management System for Lithium-Ion Batteries;Hakozaki,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3