Analysis and Experimental Investigation of the Light Dimming Effect on Automotive Visible Light Communications Performances

Author:

Beguni Cătălin,Căilean Alin-MihaiORCID,Avătămăniței Sebastian-Andrei,Dimian Mihai

Abstract

The use of Visible Light Communications (VLC) in vehicular applications has become a major research area due to its simplicity, high performance to cost ratio, and great deployment potential. In this context, this article provides one of the very few analyses and experimental evaluations concerning the integration of a light dimming function in vehicular VLC systems. For this purpose, a vehicle-to-vehicle VLC prototype has been implemented and used to evaluate the systems’ communication performances in light dimming conditions, while decreasing the duty cycle from 40% to 1%, and increasing the communication range from 1 to 40–50 m. The experimental results showed that in normal lighting conditions, the VLC technology can easily support low duty cycle light dimming for ranges up to 40 m, while maintaining a 10−6 BER. Nevertheless, in strong optical noise conditions, when the system reaches its SNR limit, the communication range can decrease by half, whereas the BER can increase by 2–4 orders of magnitude. This article provides consistent evidence concerning the high potential of the VLC technology to support inter-vehicle communication links, even in light dimming conditions.

Funder

the Romanian Ministry of Research and Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3