CO Preferential Oxidation in a Microchannel Reactor Using a Ru-Cs/Al2O3 Catalyst: Experimentation and CFD Modelling

Author:

Musavuli Kyatsinge CedricORCID,Engelbrecht NicolaasORCID,Everson Raymond Cecil,Grobler Gerrit LodewicusORCID,Bessarabov DmitriORCID

Abstract

This work presents an experimental and modelling evaluation of the preferential oxidation of CO (CO PROX) from a H2-rich gas stream typically produced from fossil fuels and ultimately intended for hydrogen fuel cell applications. A microchannel reactor containing a washcoated 8.5 wt.% Ru/Al2O3 catalyst was used to preferentially oxidise CO to form CO2 in a gas stream containing (by vol.%): 1.4% CO, 10% CO2, 18% N2, 68.6% H2, and 2% added O2. CO concentrations in the product gas were as low as 42 ppm (99.7% CO conversion) at reaction temperatures in the range 120–140 °C and space velocities in the range 65.2–97.8 NL gcat−1 h−1. For these conditions, less than 4% of the H2 feed was consumed via its oxidation and reverse water-gas shift. Furthermore, a computational fluid dynamic (CFD) model describing the microchannel reactor for CO PROX was developed. With kinetic parameter estimation and goodness of fit calculations, it was determined that the model described the reactor with a confidence interval far greater than 95%. In the temperature range 100–200 °C, the model yielded CO PROX reaction rate profiles, with associated mass transport properties, within the axial dimension of the microchannels––not quantifiable during the experimental investigation. This work demonstrates that microchannel reactor technology, supporting an active catalyst for CO PROX, is well suited for CO abatement in a H2-rich gas stream at moderate reaction temperatures and high space velocities.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3