Experimental Dataset of Tunable Mode Converter Based on Long-Period Fiber Gratings Written in Few-Mode Fiber: Impacts of Thermal, Wavelength, and Polarization Variations

Author:

Soto-Perdomo Juan1ORCID,Reyes-Vera Erick1ORCID,Montoya-Cardona Jorge2ORCID,Torres Pedro3ORCID

Affiliation:

1. Department of Electronics and Telecommunications, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia

2. Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, BC, Mexico

3. Escuela de Física, Universidad Nacional de Colombia, Medellín 050034, Colombia

Abstract

Mode division multiplexing (MDM) is currently one of the most attractive multiplexing techniques in optical communications, as it allows for an increase in the number of channels available for data transmission. Optical modal converters are one of the main devices used in this technique. Therefore, the characterization and improvement of these devices are of great current interest. In this work, we present a dataset of 49,736 near-field intensity images of a modal converter based on a long-period fiber grating (LPFG) written on a few-mode fiber (FMF). This characterization was performed experimentally at various wavelengths, polarizations, and temperature conditions when the device converted from LP01 mode to LP11 mode. The results show that the modal converter can be tuned by adjusting these parameters, and that its operation is optimal under specific circumstances which have a great impact on its performance. Additionally, the potential application of the database is validated in this work. A modal decomposition technique based on the particle swarm algorithm (PSO) was employed as a tool for determining the most effective combinations of modal weights and relative phases from the spatial distributions collected in the dataset. The proposed dataset can open up new opportunities for researchers working on image segmentation, detection, and classification problems related to MDM technology. In addition, we implement novel artificial intelligence techniques that can help in finding the optimal operating conditions for this type of device.

Funder

Instituto Tecnologico Metropolitano

Universidad Nacional de Colombia

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3