Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining

Author:

Machorro-Cano Isaac1ORCID,Ríos-Méndez Ingrid Aylin2,Palet-Guzmán José Antonio3,Rodríguez-Mazahua Nidia2ORCID,Rodríguez-Mazahua Lisbeth2ORCID,Alor-Hernández Giner2ORCID,Olmedo-Aguirre José Oscar4

Affiliation:

1. Tuxtepec Campus, Universidad del Papaloapan, Calle Circuito Central #200, Col. Parque Industrial, San Juan Bautista Tuxtepec C.P. 68301, Oaxaca, Mexico

2. Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, Mexico

3. Laboratorios de Anatomía Patológica y Asistencial en Córdoba S.A. de C.V., Av. 9, No. 803, Col. San José, Córdoba C.P. 94560, Veracruz, Mexico

4. Escuela Superior de Física y Matemáticas del IPN, Av. Instituto Politécnico Nacional s/n Edificio 9 Unidad Profesional “Adolfo López Mateos”, Col. San Pedro Zacatenco, Ciudad de México C.P. 07738, Mexico

Abstract

An autopsy is a widely recognized procedure to guarantee ongoing enhancements in medicine. It finds extensive application in legal, scientific, medical, and research domains. However, declining autopsy rates in hospitals constitute a worldwide concern. For example, the Regional Hospital of Rio Blanco in Veracruz, Mexico, has substantially reduced the number of autopsies at hospitals in recent years. Since there are no documented historical records of a decrease in the frequency of autopsy cases, it is crucial to establish a methodological framework to substantiate any actual trends in the data. Emerging pattern mining (EPM) allows for finding differences between classes or data sets because it builds a descriptive data model concerning some given remarkable property. Data set description has become a significant application area in various contexts in recent years. In this research study, various EPM (emerging pattern mining) algorithms were used to extract emergent patterns from a data set collected based on medical experts’ perspectives on reducing hospital autopsies. Notably, the top-performing EPM algorithms were iEPMiner, LCMine, SJEP-C, Top-k minimal SJEPs, and Tree-based JEP-C. Among these, iEPMiner and LCMine demonstrated faster performance and produced superior emergent patterns when considering metrics such as Confidence, Weighted Relative Accuracy Criteria (WRACC), False Positive Rate (FPR), and True Positive Rate (TPR).

Funder

Mexico’s National Council of Humanities, Science and Technology

Public Secretariat of Education

Mexico’s National Technological Institute

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3