DeepSpaceYoloDataset: Annotated Astronomical Images Captured with Smart Telescopes

Author:

Parisot Olivier1ORCID

Affiliation:

1. Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg

Abstract

Recent smart telescopes allow the automatic collection of a large quantity of data for specific portions of the night sky—with the goal of capturing images of deep sky objects (nebula, galaxies, globular clusters). Nevertheless, human verification is still required afterwards to check whether celestial targets are effectively visible in the images produced by these instruments. Depending on the magnitude of deep sky objects, the observation conditions and the cumulative time of data acquisition, it is possible that only stars are present in the images. In addition, unfavorable external conditions (light pollution, bright moon, etc.) can make capture difficult. In this paper, we describe DeepSpaceYoloDataset, a set of 4696 RGB astronomical images captured by two smart telescopes and annotated with the positions of deep sky objects that are effectively in the images. This dataset can be used to train detection models on this type of image, enabling the better control of the duration of capture sessions, but also to detect unexpected celestial events such as supernova.

Funder

Luxembourg National Research Fund

Publisher

MDPI AG

Reference18 articles.

1. Parker, G. (2007). Making Beautiful Deep-Sky Images, Springer.

2. Parisot, O., Bruneau, P., Hitzelberger, P., Krebs, G., and Destruel, C. (2022). Improving accessibility for deep sky observation. ERCIM News, 130, Available online: https://ercim-news.ercim.eu/en130/special/improving-accessibility-for-deep-sky-observation.

3. The increasing effects of light pollution on professional and amateur astronomy;Science,2023

4. Woodhouse, C. (2017). The Astrophotography Manual, Routledge.

5. Discovery of Extensive [O iii] Emission Near M31;Drechsler;Res. Notes Aas,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3