The Implementation of a Binary Blend of Waste Glass Powder and Coal Bottom Ash as a Partial Cement Replacement toward More Sustainable Mortar Production

Author:

Babajide Olabimtan Stephen1ORCID,Mosaberpanah Mohammad Ali1ORCID

Affiliation:

1. Civil Engineering Department, Cyprus International University, North Cyprus, Nicosia 99258, Turkey

Abstract

One way the sustainability and efficiency of concrete production can be improved is by incorporating waste by-products into the mix. This can help reduce the use of natural resources, such as river sand, and prevent the pollution of valuable land. Two specific examples of waste by-products that can be used in the concrete industry are waste glass powder and coal bottom ash. This study presents an experimental investigation that analyzes the influence of adding glass powder and waste bottom ash from 0% to 20% with a 5% interval to produce high-performance mortar for rheological, mechanical, and durability properties cured under different conditions (wet and dry) and temperatures (20 °C), and at several curative processes at 7 and 28 days. The water/cement ratio is a constant 0.35. According to the research findings, blending glass powder and coal bottom ash in the production of mortar results in a significant improvement in performance, particularly in terms compressive and flexural strength (3.4–20.8%) (1.7–20.3%), while employing a 10% WGP and 10% CBA binary blend provides a large increase in the flexural strength (10.6%). In the fire resistance test, 15% WGP and 5% CBA has the maximum bond strength at 200 °C (2.6%). In SEM pictures of WGP and CBA, it is found that the two materials have a low porosity compared to the control cement mortar. Furthermore, the study finds that 10% glass powder and 10% coal bottom ash combined with cement paste is the best percentage of waste by-products to use in the creation of high-performance mortar. This ratio was discovered to be the most successful in terms of increasing mechanical, rheological, and durability qualities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference73 articles.

1. Preliminary Seismic Performance Assessment Procedure for Existing Rc Buildings;Yakut;Eng. Struct.,2004

2. Application of geopolymer concrete;Kumar;Int. Res. J. Eng. Technol.,2015

3. Review study towards the Effect of Silica Fume on the fresh and hardened properties of concrete;Imam;Adv. Concr. Constr.,2018

4. Reuse of waste marble dust in the production of cement and concrete;Aliabdo;Constr. Build. Mater.,2014

5. Utilization of waste marble dust as an additive in cement production;Tekin;Mater. Des.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3