Utilization of FTIR and Machine Learning for Evaluating Gluten-Free Bread Contaminated with Wheat Flour

Author:

Adedeji Akinbode A.1ORCID,Okeke Abuchi1,Rady Ahmed M.2ORCID

Affiliation:

1. Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506, USA

2. Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

In this study, Fourier-transform infrared (FTIR) spectroscopy coupled with machine learning (ML) approaches were applied to detect and quantify wheat flour (WF) contamination in gluten-free cornbread. Samples of corn flour (CF) were contaminated with WF in the range of 0–10% with a 0.5% increment. The flour samples were baked into bread using basic bread formulation and ground into a fine particle size for homogeneity, and FTIR spectra of the ground samples were obtained and standardized before modeling. For constructing the classification model, majority voting-based ensemble learning (stack of k-nearest neighbor [KNN], random forest, and support vector classifier) was implemented to detect and quantify WF in the cornbread samples. KNN regressor was determined to be the best predictive model to quantify wheat contaminants based on the majority-vote ensemble. The optimal classification model for the test set showed an F1 score, true positive rate (TPR), and false negative rate (FNR) of 1.0, 1.0, and 0.0, respectively. For the quantification models, the coefficient of determination and root mean square error for the prediction set (R2P and RMSEP) were 0.99 and 0.34, respectively. These results show the feasibility of utilizing FTIR along with supervised learning algorithms for the rapid offline evaluation of wheat flour contamination in gluten-free products.

Funder

National Institute of Food and Agriculture (NIFA) U.S.D.A. Multistate Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3