Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems

Author:

Tutkun Nedim1,Scarcello Luigi2ORCID,Mastroianni Carlo2ORCID

Affiliation:

1. Department of Electrical & Electronics Engineering, İstanbul Ticaret University, 34840 İstanbul, Turkey

2. ICAR-CNR, Via P. Bucci, 8/9 C, 87036 Rende, Italy

Abstract

With smart appliances, it has been possible to achieve low-cost electricity bills in smart-grid-tied homes including photovoltaic panels and an energy-storage system. Apparently, many factors are important in achieving this and the minimization problem formulated requires a solution depending on a certain number of constraints. It should also be emphasized that electricity tariffs and the appliance operation type and range play a major role in this cost reduction, in particular, with dynamic electricity pricing usually available in a smart-grid environment. A limited number of metaheuristic methods are used to solve such a minimization problem, in which the start time of a controllable smart home appliance is the variable. However, the datasets used in many studies are different from each other and it is mostly unclear which of the proposed methods is better in this regard. In this study, we aim to minimize the daily energy consumption cost in a typical smart home with an energy-storage system integrated into a photovoltaic system under dynamic electricity pricing. While minimizing the daily energy consumption cost only, the user’s discomfort and the peak-to-average ratio inevitably tend to increase, as expected. Therefore, a balance can be established among the objectives using multi-objective optimization. Solving this problem helps comparatively reduce the daily energy consumption cost, the peak-to-average ratio and the user’s discomfort. The results are meaningful and encouraging for the optimization problem under consideration.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3